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Abstract

The present work improves the subspace filter as Electrocardiogram (ECG) en-

hancer for removing Electromyogram (EMG) contaminations. A unified view of the

data matrix formulation process of the existing subspace filters was achieved by

considering an enhancement problem as a parameter estimation problem of a lin-

ear empirical generation model of ECG. In contrary to a linear prediction (LP)

model implicitly assumed in the conventional subspace filters for ECG enhance-

ment, a multiple cycle prediction (MCP) model was proposed, which resulted in a

data matrix that is more suitable for applying the truncated singular value regu-

larization technique to parameter estimation. As a necessary step for building an

MCP, alignment of two ECG cycles with different length was handled by a dynamic

time warping (DTW) algorithm. Finally, the separation of the signal and noise sub-

spaces was realized by a run-time singular value decomposition (RTSVD). RTSVD

provides an automatic and adaptive way of determining the dimension of the sig-

nal subspace. Representative records from the MIT-BIH Arrythmia Database were

combined with EMG noise in the MIT-BIH Noise Stress Test Database with a a typ-
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ical 10dB signal-to-noise ratio for which the proposed method achieved about 5dB

boost while it achieved about 10dB boost for the EMG recorded in our experiment.

Key words: Electrocardiogram, Subspace filter, Singular value decomposition,

PhysioNet
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1 Introduction

ECG signals collected in such adverse situations as during exercises, and stress

tests are often contaminated by EMG signals whose spectrum overlaps that of

ECG. This makes the conventional ECG enhancement methods based on finite

impulse response (FIR) filter or infinite impulse response (IIR) filter useless

without introducing significant distortions of the original ECG. Various more

sophisticated and capable ECG enhancement methods have been proposed.

Adaptive filters have been shown as highly effective in removing narrow-band

interference (e.g., power-line noise) and baseline wander as in [1]. However,

their success in ECG enhancement has been limited by the requirement of ad-

ditional reference channels for carrying out noise cancellation. A category of

methods without such limitations has recently been proposed. These methods

share the same main idea that a noisy ECG can be enhanced by its projection

onto a proper signal subspace but they are quite different in the way they

formulate such a signal subspace. In situations where a multiple-lead ECG is

available the method [2] worked by exploiting the redundancy of the multiple

channels where the signal subspace is revealed by a singular value decomposi-

tion (SVD) of a data matrix formed straightforwardly from the 2-dimensional

(time and channel) recordings. In more general situations of a single-lead ECG,
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methods proposed in [3], and [4] formulated a data matrix in the discrete co-

sine transform domain from which SVD was applied for constructing a signal

subspace. SVD technique was also used in [5] for extracting fetal ECG from

a single maternal ECG where the data matrix for forming signal subspace

was constructed by arranging cycles of maternal ECG in consecutive rows. In

another method proposed in [6], the formation of the data matrix was based

on the embedding theory developed in the field of nonlinear dynamic analysis

of time series and a nearest neighbor search procedure in the embedded state-

space. An array of such methods (called geometric filters) has been extensively

discussed in [7], [8], and [9].

The present work aimed at further developing the subspace filters as ECG

enhancer by first providing a unified view of the aforementioned subspace

filters and then exploring a widely used alignment algorithm in speech signal

processing, i.e., the dynamic time warping (DTW) for aligning different ECG

beats. The alignment of ECG beats is a necessary step for properly formulating

the data matrix on which subspace decomposition is carried on. Finally, we

propose a run-time SVD algorithm which exploits the morphology of ECG for

an automatic and adaptive signal subspace dimension determination.

We are able to achieve a unified view of the various subspace filters by consid-

ering the data matrix formulation process as formulating an empirical signal

generation model which will lead an enhancement problem to a model param-

eter estimation one in a typical noise-in-variable scenario. By proceeding in

this way, the solution space for the enhancement problem is enlarged since pro-

jecting a noisy signal onto a signal subspace is equivalent to a truncated SVD

which is just of one of regularization techniques for solving noise-in-variable

parameter estimation problems as discussed in [10].
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A multiple cycle prediction (MCP) model is proposed for modelling ECG gen-

eration in this paper which requires an alignment of previous cycles of ECG to

the current one. This step is also required in many existing algorithms [5,11]

that exploit the quasi-periodic nature of ECG. However, techniques used so

far are either linear stretch or a zero-padding one. The major problem of a

rigid linear stretching is that such a method cannot handle a very common

phenomenon of ECG that cycle duration is not proportional to the width of

characteristic waves. Zero padding is just an arbitrary procedure for conve-

nience without any justification. DTW avoids these limitations by performing

a nonlinear stretching such that different characteristic waves present in each

ECG cycle can be aligned simultaneously.

Finally, determining a proper dimension for the signal subspace is a difficult

problem. Some general algorithms have been proposed in the context of rank

determination [12]. There is no automatic and systematic way of performing

such a task as in the existing subspace-based ECG enhancement algorithms.

Furthermore, signal dimension may be a changing number within one ECG

cycle since QRS, P and T waves have both different morphologies and ampli-

tudes. Therefore, ideally an adaptive way of dimension determination should

be preferred. For such a purpose, we propose a run-time SVD algorithm which

slides a window across an ECG cycle and thus a different signal subspace di-

mension can be automatically determined for each window.

Throughout the text, a boldface lower case letter is used to represent a vector.

An upper case letter represents a matrix. Any letter with the additional symbol

”˜” on top represents its perturbed version and its estimate with the symbol

”ˆ”.
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2 Methods

2.1 Problem formulation

In this section, an empirical signal generation model is proposed based on

which the ECG enhancement is to be viewed as a parameter estimation prob-

lem. Before proposing such a model, the problem of regularizing linear least-

square solutions will be discussed. Then it can be shown that the truncated

singular value decomposition is just one of many techniques of conducting

regularization.

The empirical signal generation models that we are interested in using for

ECG enhancement are linear ones such that all of them can be eventually

reduced to the following common form:

x = Hb (1)

where x denotes a signal vector that is a linear function of unknown parameter

vector b, and H is a data matrix that is considered as known. Now suppose

we have an observation of x which has an additive observation noise v such

that

x̃ = Hb+ v (2)

The enhancement problem is to recover as much as possible x from x̃. As a

classical result for linear models, the maximum likelihood (ML) estimate of b

given x̃ will also give a ML estimate of x, i.e., x̂ml = Hb̂ml. This implies that

an enhancement problem is closely related to parameter estimation problem.
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However, a more difficult and realistic problem is that although H is known,

it is also contaminated by noise such that the model reads now as

x̃ ≈ H̃b+ v (3)

In this case, although a ML estimate of b might not guarantee a ML estimate

of the x, it can achieve certain amount of noise reduction by applying b̂ to

H̃ to retrieve x. In doing so, the enhancement problem becomes a problem of

finding b̂, which is a well known noise-in-variable estimation problem (since

H is also contaminated). The ordinary least squares (OLS) solution is not

anymore an appropriate one for such a problem, nevertheless it serves as a

good starting point for motivating the idea of regularization. This is achieved

by formulating the OLS solution in terms of the SVD of H̃

H̃M×N = ŨM×M Σ̃M×N Ṽ
T
N×N (4)

where the diagonal entries σ̃i, i = 1, . . . ,min(M,N), of Σ̃ are called singular

values and are ordered with decreasing magnitude.

The minimal norm OLS solution of b is

b̂ols =
r∑

i=1

x̃T Ũi

σ̃i
Ṽi (5)

where r is the rank of H̃, which is less or equal to the number of non-zero

σ̃is. As σi decreases with increasing i, Ṽi becomes more fluctuating. Hence,

Equation 5 clearly reveals that as long as the decay of x̃T Ũi is slower than

σ̃i with increasing i, more and more fast components will enter the solution.

This is not desirable for our purpose of ECG enhancement since high-frequency

portion of the ECG spectrum is usually dominated by EMG.
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As a remedy to such a problem, the technique of regularization [10] is to find

an appropriate set of ”filtering” coefficients fi such that the estimate of b is

obtained as

b̂ =
r∑

i=1

fi
x̃T Ũi

σ̃i
Ṽi (6)

Usually, fi is a non-increasing series aimed at dampening small singular values.

One way of choosing fi is to keep first d greatest singular values in the recon-

struction equation as in Eq.6, equivalently f = [1, . . .
︸ ︷︷ ︸

d

, 0 . . .]. This resulted in

the widely used truncated SVD (TSVD) algorithm as employed in other sub-

space filtering algorithms of ECG. There are two categories of regularization

methods. TSVD belongs to the non-iterative group to which other methods

such as Tikhonov regularization, damped SVD, and maximum entropy regu-

larization etc. also belong. Another category of methods is of iterative nature

such as various conjugate gradient algorithms. Results from various nonlinear

dynamic analyzes of an ECG signal suggest that it may be generated from a

low dimensional dynamic system. Thus the intrinsic low dimensionality and

the nearly periodic nature of ECG are the prior information that may lead

one to construct such a data matrix H̃ that will have a lower rank than its

physical dimension. This makes the TSVD a suitable regularization technique

for ECG enhancement.

Only H̃ in the TSVD algorithm is decomposed. To better illustrate that a

SVD smoother adopted in the existing ECG enhancer actually falls into the

described parameter estimation framework, let us introduce yet another way

of conducting regularization, i.e, the total least squares (TLS). It is a classic

way of solving a noise-in-variable estimation problem. A TLS solution is also

a regularized solution in the sense of that a corresponding set of filtering
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coefficients fi can be found [13]. The idea of truncation can also be applied to

a TLS solution resulting in a truncated total least squares solution (TTLS)

where an enhanced compound matrix H̃c = [H̃ b̃] is obtained as a low rank

approximation using its SVD as

Ĥc =
d∑

i=1

Ũ c
i (Ṽ

c
i )

T σ̃ci (7)

where the SVD of H̃c is

H̃c = Ũ cΣ̃c(Ṽ c)T (8)

and the last column of Ĥc gives b̂.

To relate the existing subspace filter algorithms of ECG enhancement to the

TSVD and TTLS, the so-called SVD smoothing operation introduced in [3] is

reviewed here. Given N samples of a signal xi, i = 1, . . . , N , the data matrix

X is to be formed as [x1 x2 . . . ,xN−p] where

xi = [xi, xi+1, . . . , xi+p]
T (9)

Then a low rank approximationXr ofX is obtained just like obtaining a TTLS

solution with d = r as in 7. Finally, Xr is converted into a Hankel matrix form

and the filtered signal is reconstructed from the elements of the first row and

last column of Xr in a continuous manner.

It is now obvious that the implicit signal generation model in the above

smoothing operation is a pth order linear prediction (LP) model which simply

reads

xn =
p

∑

i=1

aixn−i, n = p+ 1, . . . , N (10)
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Besides formulating a data matrix in time-domain, a discrete cosine transform

(DCT) domain SVD smoothing operation was advocated in [3,4], which still

implicitly assumes a LP model for the DCT coefficients of the original x. The

performance of the filter was greatly improved by this additional step of DCT.

Besides a simple LP model, adopting a more advanced models might also help

improve the performance of an enhancer. The method used in extracting fetal

ECG from a maternal ECG [6] actually adopted a local linear model of ECG

where a possible nonlinear ECG model was assumed to be well approximated

in a local neighborhood of the state space by a linear one. Therefore, different

LP models can be solved for each of a set of reference points in the state space

using TSVD. As can be easily seen, most of the computational effort in this

method is spent on performing a neighborhood search in a high dimensional

state space.

If we limit the regularization methods to be TSVD or TTLS, one natural

question one would raise is whether there exists a different and better way

of assuming a signal generation model from the perspective of ECG enhance-

ment. To see this, we can formulate the enhanced signal x̂ by using TSVD

solution in Equation 6 explicitly as

x̂ =
r∑

i=1

fix̃
T ŨiŨi (11)

which reveals another interpretation of ECG enhancement that the enhanced

signal is a weighed summation of the projections of the original signals onto

each dimension of the signal subspace spanned by Ũis. Unfortunately, this

signal subspace is also perturbed by the noise, however the perturbation the-

ory [14] of SVD shows that the amount of perturbation on this subspace is
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inversely related to the gap between the singular values of the signal subspace

and those of the noise subspace. Therefore, a model with a data matrix H

having a greater singular value gap between signal and noise subspace should

be preferred. This then becomes our motivation of proposing a MCP model.

In the present work, we made an assumption that QRS wave peaks of a noisy

ECG signal are still retrievable through a QRS detector for the purpose of

concentrating on the enhancement problem.

In the MCP model, an ECG sample at the ith position of the kth cycle is

assumed to be a linear combination of its corresponding samples and their w

neighbor points in the previous p cycles, i.e.,

xki =
k−1∑

m=k−p

w/2
∑

n=−w/2

c(m,n)xmi+n (12)

where c(m,n) is the model coefficients, p is the number of previous cycles, and

w is the number of neighbor points. Equation (12) indeed falls into the general

linear model of Equation (1). It can be obtained by cascading xki , i = 1, . . . , Nk

into a column vector x and c(m,n) as b. where the data matrix HNk×(w+1)p is

formed by arranging items of xmi+n in Equation (12) correspondingly.

In the above model, the p previous cycles of the kth one are required to have

the same duration Nk. This was achieved by running a nonlinear warping

procedure to align each of the p cycles to the kth one. Consecutive ECG cycles

do resemble each other in terms of morphology although the duration of each

cycle might change due to hear rate variabilities. Therefore, the data matrix

H thus formed carries a significant amount of redundancies for smoothing out

noise. Moreover, each column of H will be close to each other than a LP model

and this consequently renders the gap between the dominant singular values
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and the remaining ones of H larger [15].

2.2 Alignment of two ECG cycles

DTW algorithm is a widely used algorithm in speech recognition applications

for the alignment of two speech feature vectors produced at different speaking

rate [16]. In this case, two speech features are aligned into a common dura-

tion which does not necessarily equal to either of the original ones. In our

application of ECG alignment, it is not necessary to choose a new time base.

Instead we formulate the problem as following: let xi, i = 1, . . . , Nx denote an

ECG cycle that another ECG cycle yi, i = 1, . . . , Ny is to be aligned with. The

problem of optimal alignment is to find a warping function ψ(i), i = 1, . . . , Nx

for y such that the distance between x and the aligned version of y, i.e., yψ(i)

is minimized as expressed in the following:

min
ψ

Nx∑

i=1

dist(xi, yψ(i)) (13)

where dist(x, y) can be any function that measures the closeness between x

and y, and was chosen to be the absolute value of x− y in the present work.

As shown in Figure 1, this problem can be visualized as finding an optimal

path though a dot matrix from point (1, 1) to (Nx, Ny) which has the minimal

total cost among all possible paths. The cost associated with any dot (i, j)

is dist(xi, yj). The warping function ψ is then just the projection of the path

onto the x axis. Apparently, ψ should satisfy the following three constraints

for it to be meaningful:
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• Endpoint constraints

ψ(1) = 1 (14)

ψ(Nx) = Ny (15)

which essentially means that the path has to be started at (1, 1) and end at

(Nx, Ny).

• Monotonicity condition

ψ(k + 1) ≥ ψ(k) (16)

which implies that there is no negative slope anywhere along the path.

• Local continuity

A local continuity constraint can be viewed as a definition of a set of single-

move paths that can reach a given point (i, j). As we are going to warp y

only, the increment in x per move is always 1. This results in less flexibility

in specifying local continuity than the original DTW such that the max

local slope kmax is enough for this purpose by imposing a max increment in

y direction per move in x direction.

An efficient solution to such a problem is the dynamic programming (specially

termed dynamic time warping algorithm in speech signal processing research

community). Let ϕi,j represent the cumulative cost of reaching the point (i, j)

and ξi,j denote that the point (i − 1, ξi,j) is the best one-move intermediate

point to reach the point (i, j). Then the main steps are as following:

• Initialization
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Cumulative cost ϕ1,j is initialized as

ϕ1,j =







dist(x1, yj) , j = 1

∞ , j = 2, . . . , Ny

(17)

which means that the route has to start at (1, 1).

• Iteration

For ix = 2, . . . , Nx − 1, and the legal iys at each ix satisfying

iy = max(1, Ny − kmax(Nx − ix)), . . . ,min(Ny, 1 + kmax(ix − 1)) (18)

update ϕ as

ϕix,iy = min
l
ϕix−1,l + dist(ix, iy) (19)

and ξ as

ξix,iy = argmin
l
ϕix−1,l (20)

where l lies in [iy, iy − 1, . . . , iy − l].

• Backtracking

ψ(k) now is to be obtained backwards for k = Nx − 1, . . . , 2 by first noting

that

ψ(Nx − 1) = argmin
iy

ϕNx−1,iy (21)

and then ψ(Nx − i) can be obtained by just looking up ξ with an index

(Nx − i, ψ(Nx − i+ 1)) for i = 2, . . . , Nx − 2

A more general DTW algorithm with other types of local continuity and

weighting coefficients of distances can also be used for ECG alignment in

which case ψ is to be obtained by just projecting the optimal path onto the
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x axis. This definitely introduces more flexibility of tuning the algorithm but

those local continuity constraints were empirically derived, therefore there is

no special reason to bias for any of them. Nevertheless, one possible benefit of

tuning the local continuity is to reduce the computational cost of DTW since

different type of local continuity constraint will result in different size of the

global feasible region for searching and thus different computational cost. In

the present work, this topic is not further pursued.

2.3 Run-time SVD

A typical ECG cycle can be decomposed into successive standard components

including a high-amplitude QRS complex, a P-wave and a T-wave both of

which are usually of small amplitudes. Additionally, inter-wave segments cor-

responding to the iso-electrical portion of an ECG cycle are slowly varying but

almost flat. This property of ECG essentially means that the signal-to-noise

ratio (SNR) in one ECG cycle is time-varying implying that the dimension

of the signal space is also time-varying. Unfortunately, the existing subspace

filters for ECG enhancement always use one global dimension for the whole

cycle. The consequence of doing so is that distortion of QRS complex often

ensues from the necessary filtering of the noise for other components or vice

versa.

This contradiction can be reconciled using a run-time SVD schema where

a running sub matrix H̃i of H̃ is SVD-decomposed and the reconstruction

dimension can thus be determined for each of the sub matrices. Given window
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length l and step size τ , H̃i is formed as

H̃i = H̃((i− 1)τ + 1 : (i− 1)τ + l, :) , i = 1, . . . ,
(N − l)

τ
+ 1 (22)

where the matrix indexing convention used in MATLAB programming lan-

guage is adopted here for representing a sub matrix of A composed of its rows

from i1 to ik as A(i1 : ik, :). Consequently, SVD of H̃i is

H̃i = ŨiΣ̃iṼi (23)

It is usually to have τ less than l in practice.

A criteria for selecting a reconstruction dimension per H̃i is still needed. Given

an original matrix A and its permutated version Ã = A + B, the Weyl the-

ory [14] states that

|σi(Ã)− σi(A)| ≤ σ1(B) (24)

where σi(B̃) represents the i
th singular value of matrix B.

In utilizing this result, only components whose corresponding singular values

of the unperturbed data matrix are greater than those of the noise matrix are

kept in reconstruction. Combing this requirement with the above inequality,

the following criteria for keeping the jth component for each H̃i is obtained

σj(H̃i) > 2σ1(Ei) (25)

where Ei is the corresponding noise matrix added to Hi. In practice, σ1(Ei) is

an unknown. One assumption made here is that σ1(Ei) is considered to be the

same for all the Eis in the current processing ECG cycle. With this simpli-
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fication, the run-time SVD automatically provides an estimate of it because

EMG noise will be manifested in isoelectronic regions of an ECG cycle. This

means that one can use the minima of the σ1(H̃i) of all the sub matrices as

an estimate of σ1(E).

There are other ways of determining a proper reconstruction dimension since

this is a typical rank determination problem for a rank-deficient matrix, all

of which requires some more information or assumptions regarding the per-

turbation noise. On the other hand, by combing the run-time SVD with the

typical morphology of an ECG cycle, the proposed way of finding σ1(Ei) is

much less demanding in prior knowledge about the noise but able to discover

such information about perturbation automatically.

Run-time SVD does not directly produce a complete cycle of enhanced ECG

but a time series for each window. Due to the overlapping of successive win-

dows, a direct stacking of those segments can neither result in a complete

cycle. Therefore, an additional step is needed. To derive a general schema for

any l and τ combinations, let S denote such a matrix whose ith column is

the enhanced ECG segment from processing H̃i. Each entry sij of S is ac-

tually corresponding to the ECG sample of the current cycle at the position

i+(j−1)τ . By realizing this, we can thus formulate the problem of recovering

an estimate of ECG x from S as to find the minima of the following objective

function

J(x̂n) = min
N∑

n=1

M(n)
∑

i,j

[x̂n − si,j]
2 (26)

where M(n) represents the number of i, j pairs that satisfy the constraints

n = i+ (j − 1)τ (27)
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The optimal x̂n is consequently obtained by setting the partial derivative of

J regarding x̂n to zero and the result is simply

x̂n =

∑

i,j si,j

M(n)
(28)

where the {i, j} pairs included in the summation must satisfy Equation 27 for

the given n.

2.4 A summary of algorithm parameters

In summary, the proposed algorithm involves the following user configurable

parameters:

• p Number of previous cycles for constructing H̃.

• w Number of neighbor points for constructing H̃.

• l Window of run-time SVD.

• τ Step of run-time SVD.

p and w together determine the dimension of the data matrix H. In the sim-

plest case where ECG becomes purely periodic such that the rank of H equals

w. Therefore, increasing w increases the rank of H. This is not desirable be-

cause more and more small non-zero singular values of H will be indistinguish-

able from those that are due to noise. This in consequence means that a larger

than necessary truncation dimension has to be selected and will then result in

the distortion of the signal. Therefore, if possible, one should choose a larger

p and a small w to make the H intrinsically low-dimensional.

l should ideally be chosen such that it is less than the length of the shortest

isoelectronic region of ECG to guarantee that its corresponding sub matrix
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Hi is solely composed of the noise such that its first singular value roughly

estimates the upper bound of the bias that is present in the rest of sub matrixes

Hi. τ should usually be chosen to be 1 for the maximal time resolution.

2.5 Data

Records in the MIT-BIH Arrythmia Database were used as ”pure” signals.

EMG signals from MIT-BIH Noise Stress Test database as well as EMG signals

from our own experiments (under revision for submission) were used as noise to

be added to ECG. Both databases were obtained through the PhysioNet [17].

The performance of the algorithm was assessed by the SNR of signal achieved

after the enhancement. SNR in dB was computed according to its definition

as

SNR = 20 ∗ log10(
‖x− x̂‖

‖x‖
) (29)

where ‖x‖ stands for the standard deviation of the vector x. It should be

noted that an original arrythmia ECG itself is quite noisy. A final SNR close

to its inherent noise level should be considered as a good performance.

3 Results and discussions

The reported results were obtained using a MATLAB implementation of the

proposed method that can be downloaded from www.bol.ucla/x̃iaohu/Software.
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3.1 Singular value gap

In Figure 2, a comparative plot of both singular value spectrum and left sin-

gular vectors of an MCP and a LP model based data matrix H and H̃ is

presented. Data matrices from both models were constructed in such a way

that they has the same physical dimension. The pure ECG used here was the

channel No.2 of the 118th record in arrythmia database. 10dB noise taken as

the channel No.2 of the MA record from the stress database was added to

them. A more clear-cut gap exists in the singular value spectrum of a MCP

model with small number of singular values belonging to the signal subspace.

This essentially means that LP model requires a higher reconstruction di-

mension. But this is not desirable because the more left singular vectors are

included in reconstruction, the more distortion will be introduced in the en-

hanced ECG. As shown in the figure, the angle between the second singular

vector and its noisy counterpart for MCP model is already 15o while for the

fifth one of LP model it is more than 90o. Furthermore, this figure also makes

it clear that an appropriate global reconstruction dimension for a whole ECG

cycle is hard to choose considering that the 15o angle difference for the second

singular vector is mostly from the non QRS portion of an ECG cycle. This

indicates that for QRS complex a reconstruction dimension of more than two

might be necessary but not for other portions.

3.2 DTW

To illustrate how DTW algorithm performs even for a noisy record, we used

the same ECG and noise signal in producing Figure 2. A DTW alignment with
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kmax = 3 and a linear alignment were performed for two noisy ECG segments

and the results are shown in Figure 3. A linear alignment means the warping

function is analytically computed as

ψ(i) = ki+ b (30)

where slope k and intercept b is obtained from ψ(1) = 1 and ψ(Nx) = Ny.

As seen in the figure, linear alignment failed to align the second beat properly

with an obvious mismatch of the QRS peaks. On the other hand, DTW worked

for both cycles as expected.

3.3 Run-time SVD and reconstruction dimension

The first three singular values of a H matrix decomposed using run-time

SVD with a window size l = 40 and step τ = 1 is displayed in Figure 4.

The proposed threshold of determining reconstruction dimension was plotted

as the thick horizontal line, which was computed as 2min(σ1(H̃i)). The true

2 ∗ σ1(Vi) was plotted as a dashed line. The tightest upper and lower bounds

of the σ1(V ) computed following [12] were also plotted as dotted lines at the

given 95% confidence level where the lower bound lb was computed as

lb = std(v) ∗
√

χ−1
0.95(N), N = (w + 1)p (31)

and the upper bound ub as

ub = std(v) ∗
√

lχ−1
0.95(N), N = (w + 1)p (32)
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where std is the standard deviation of the noise v and χ−1
α (d) is the critical

value of a χ square distribution at the level α with d degrees of freedom. As

discussed in [12], the above two bounds are meaningful only when each sample

of noise v can be assumed from an identical and independent distribution. As

seen in this figure, at most two components were needed for reconstruction

as both our bounds and the true 2 ∗ σ1(Vi) line indicate. More importantly,

they both give a proper dimension for a given window position such that

those windows corresponding to QRS complex have to be reconstructed with

dimension two while others only need one. Our bounds actually underestimate

the σ1(Vi) but are closer to it than either upper or lower bounds as computed

using Equations 32 and 31. Also there are fluctuations of the σ1(Vi) for different

window positions probably due to either nonstationarity of EMG noise or

inherent variabilities, but they are much smaller than the drop from the first

singular value to the second. Therefore, they will not affect the determination

of the reconstruction dimension.

3.4 Effect of algorithm parameters

As discussed before, there are four algorithm parameters. For the maximal

time resolution of run-time SVD, we fixed τ = 1 and manipulated each of the

remaining three parameters at a time while keeping the other two constant.

The baseline parameters used were: p = 20, w = 6, and l = 40. We used

record No.118 added with 10dB EMG noise as obtained in our experiment.

The performance of the algorithm is least sensitive to the window size l. It

only dropped from 20.6dB to approximately 19dB while l increased from 10 to

100 samples as in Figure 5. Regarding w and p, since p(w+1) determines the
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number of columns of the data matrix. It can be expected that the performance

of the filter will also depend on their product. Given a fixed and big enough p,

a smaller w is preferred while for fixed w, increasing p almost always increases

the performance although as shown in Figure 6, there is a small drop of SNR

from p = 19 to p = 25.

3.5 Various results

We have tested the performance of the filter on records No.118, 202, 205, and

219. They were selected because they have different ECG morphology and

are relatively clean to serve as pure ECG. Since 10dB is the typical noise

level encountered in real applications [11], we have only tested this case with

both recorded EMG in our experiments and MA records in the noise stress

test database (channel No. 2). MA record in the noise stress database is of

intermittent nature and thus when added to the ECG, some cycles have a

much higher SNR than the nominal 10dB. Therefore, we only kept the record

from sample No.1000 to sample No.7100 and replicated or truncated it when

adding it to an ECG record.

A summary of the results is shown in figures 8 through 11. The proposed filter

generally performs well in removing the noise while keeping the important

features of the original ECG. For EMG noise we recorded, it achieved about

10 dB improvement, this is close to the performance of a recently proposed

transform domain filter [11]. However, the filter only achieved approximately

5dB boost for MA record. The spectrum of the MA record is quite different

from the EMG spectrum in [11] and that of our recorded EMG as well. It

has more low frequency components and thus have a wider overlap with ECG
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spectrum. Therefore, it is not wise to compare the performance of filters using

EMG with quite a different spectrum.

4 Conclusions

In this paper, we have presented a data driven ECG enhancement algorithm.

It amounts to solving a linear noise-in-variable parameter estimation prob-

lem using truncated SVD as a regularization technique. The proposed MCP

empirical ECG generation model results in a data matrix which is suitable

for a truncated SVD regularization because at most two to three components

are needed for reconstructing an enhanced ECG. A reconstruction with less

components is desirable since less perturbation to the basis vectors will en-

ter the enhanced ECG. A better alignment of different ECG cycles than a

simple linear stretching was achieved by using a simplified DTW algorithm

although further investigations regarding possible benefits of adopting a full-

fledge DTW algorithm in improving the efficiency as well as the performance

of ECG alignment is necessary. Finally, we developed a run-time SVD proce-

dure by sliding a window through the row direction of the data matrix. This is

equivalent to allow for time-varying model coefficients in an ECG cycle. The

run-time SVD also made it possible to explore the ensemble of singular val-

ues of all the windows during a cycle for determining a proper reconstruction

dimension for each window.

Performance of the proposed filter is close to a recently proposed transform

domain ECG enhancement algorithm when tested against an EMG noise pro-

duced under a sustained muscle action. Although, it achieved less improvement

in terms of SNR when tested against the MA record in the MIT stress test
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database in which case EMG noise has a considerably wide overlap with ECG

in spectrum, a close inspection reveals that the enhanced ECG recovers many

salient features of original ECG otherwise lost in the contaminated signal.
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(1,1)

(Nx,Ny)

Y

X

Fig. 1. A graphic illustration of the ECG warping problem. The solution of an

alignment problem is to find an optimal path liking point (1, 1) to (Nx, Ny). Each

point (i, j) on the graph is associated with a cost which in the present work is the

distance between xi and yj .
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Fig. 2. Comparison of the singular value spectrum and left singular vectors of two

data matrices formed based on MCP and LP models as well as their perturbed

counterparts. Figures on the left side are based on MCP model. The middle panel

shows the first left singular vector while the lower panel displays the second singular

vector for MCP model and the fifth for LP model. As illustrated by its singular value

spectrum, dimension of the signal subspace of a LP model is much higher than that

of MCP.
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Fig. 3. A demonstration of nonlinear alignment of ECG beats using DTW as com-

pared to a linear stretch alignment. The SNR of the signals used is 10dB with EMG

noise recorded in our experiment. Results from using a linear stretch are shown in

the lower panel with DTW results in the upper one. In each panel, the middle trace

displays the ECG signal that the lower trace was aligned to while the upper trace

shows its aligned version.
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Fig. 4. The first three singular values of each window for an ECG cycle. The thresh-

old set up to determine the reconstruction dimension for each window is plotted as

the thick horizontal line. The dotted lines are an estimate of the upper and lower

bounds of the largest singular value of the unknown perturbation matrix while the

broken line gives its actual value.
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Fig. 5. SNRs of the enhanced ECG for different window steps.
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Fig. 6. SNRs of the enhanced ECG for different number of cycles used for modeling.
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Fig. 7. SNRs of the enhanced ECG for different neighborhood size.
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Fig. 8. Enhanced ECG as compared with its original and noise contaminated one

for the record No.118 (upper panel) and No.205 (lower panel). EMG noise used was

recorded from our experiment.
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Fig. 9. Enhanced ECG as compared with its original and noise contaminated one

for the record No. 202 (upper panel) and No.219 (lower panel). EMG noise used

was recorded from our experiment.
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Fig. 10. The same as in Figure 8 with MA record in the stress test database used

as noise.
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Fig. 11. The same as in Figure 9 with MA record in the stress test database used

as noise.
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